
March 2000

Does e-commerce software
need engineering?

(Continued on page 3)

Meeting tight schedules through cycle
time reduction
by Dr. Dennis J. Frailey

Senior Fellow, Raytheon; Adjunct Professor, SMU

(Continued on page 4)

Vol. 7, No. 1

I have noticed a temptation to treat
e-commerce software as radically dif-
ferent from other software products.
This treatment can encourage develop-
ment teams to discard techniques that
have worked in the past or waste too
much time creating new techniques.

E-commerce software certainly has
some unique requirements, such as
performance with high traffic, reliabil-
ity during lengthy transactions, accura-
cy of links to sister components and
the necessity for data security. E-com-
merce software also has many similar-
ities. It needs to be built and shipped
quickly, work as advertised, not cost a
fortune to develop, and be usable on
different machines.

E-software can be created painfully
using a code-and-ship life cycle. It can
also be achieved with less pain, cost
and risk by employing mini-manage-
ment and mini-engineering techniques.
These consist of well-tested concepts
used on a scale in proportion to the
project's size. For example, using
small-scale versions of goal clarifica-
tion, design, test, risk identification
and early bug detection.

One large company we helped needed
to provide a web browser and e-mail
service to 3,000-plus PCs across its
various divisions. The part-time team
was given only a few weeks to com-
plete the project. The project involved
a complex design of servers,
encrypters and web applications. The
team could have taken a code-and-ship
approach, run fast and hoped for the
best. Instead, we coached them
through approximately six hours

How do you meet a tight schedule?
Skimp on quality? Add more staff? Have
people work overtime? These are the
classic, short-term solutions to schedule
problems. They sometimes work -- but
they do nothing to head off the next
schedule crisis, and often make it worse.
None of these addresses the real causes of
schedule problems. Why does it take
longer than it should to develop software?
Experts in the field of cycle time say it all
boils down to three fundamental prob-
lems: variability, overly-complex process-
es, and bottlenecks and constraints, often
imposed by the organization on itself.

Short cycle time gives you a competitive
edge. Studies by McKinsey and Co. show
that being on time but 50% over budget

loses about 3% of total potential profit
over the product’s lifetime. But meeting
budget while being six months late loses
32% of total profit potential. Why?
Because during that six months your
competitor has gained an edge that you
can seldom recover from. In environ-
ments like software development, where
product lifetimes are short, your product
may never make it out the door.

Cycle time problems are easy to spot. Just
look for long queues and rework in your
process. Is there a wait for access to test
equipment? Do the software developers
often misunderstand the system engineers
or customers? Does management
approval take too long? Does it take a lot

Bottlenecks are a common problem.

Editor’s corner

(3 percent of the project duration) of
planning, risk mitigation and schedule
optimization to determine how their lim-
ited resources could meet the deadline.
As a result, the team achieved an on-time
and on-budget deployment.

I recently attended a workshop for SEI
CMM Level 4 and 5 software organiza-
tions. They presented their techniques for
optimizing schedule, quality and cost. At
lunch, I asked one of the e-commerce
representatives from India how his com-
pany could compete with code-and-ship
companies in other parts of the world. He
looked confused and then replied that all
of his competitors in India were also SEI
CMM Level 5. He added that with their
capability they could guarantee world-
wide customers a completely reliable
solution at lower cost. Many of his com-
petitors in the USA could not guarantee
anything, hence their competitive advan-
tage.

Whether you are building e-commerce
products or not, you have delivery goals
to meet. Small-scale, well-tested concepts
such as regression testing, architecture
design, project estimation, risk analysis,
requirements management and inspection
still provide very effective techniques to
ensure your organization's success.

Neil Potter

❏ Decrease product development cycle time.
In this three-part workshop, CYCLE TIME REDUCTION FOR SMALL SOFTWARE

PROJECTS, project managers and their teams learn how to accelerate delivery
through specialized schedule optimization techniques.

❏ Launch projects effectively. Meet project deadlines and reduce risks.
In this three-day SOFTWARE PROJECT PLANNING AND MANAGEMENT workshop,
project managers and their teams learn how to meet deadlines through better
estimation, reduce surprises using risk management, schedule work for better
optimization, understand and negotiate project trade-offs, and track progress.

❏ Meet project deadlines. Scope and estimate the project work.
This one-day SOFTWARE ESTIMATION workshop (a subset of Software Project
Planning and Management) helps teams develop more accurate estimates.

❏ Avoid schedule delays caused by needless product rework.
Find defects rapidly.
This two-day INSPECTION (PEER REVIEWS) workshop teaches teams to efficient-
ly find defects in code and documentation. (Includes moderator skills.)

❏ Hands-on SEI CMM/CMMI. Perform a mini-CMM gap-analysis.

The following workshops are available:

❏ SEI LEVEL 2 (one day), SEI LEVEL 3 (two days), SEI LEVEL 4 (one day).

❏ SEI CMMI—Overview of CMMI-v0.2 (One half-day presentation).

❏ Identify critical changes to improve organizational results.
Benchmark against the CMM.
A SOFTWARE PROCESS ASSESSMENT examines your organization’s software prac-
tices and generates a focused list of the critical areas for improvement. Our SEI
authorized Lead Assessors conduct customized CMM-based appraisals.

❏ Goal/problem-based improvement.
This two-day SOFTWARE ENGINEERING PROCESS IMPROVEMENT workshop pro-
vides a systematic approach for organizations to improve their development
capability. It includes: getting management support, focusing the organization
on the critical issues, planning the improvement and effecting change.

❏ Tailored assistance. Dedicated phone-based assistance.
This service consists of customized education and coaching on your specific
problems (e.g., meeting deadlines, quality and cultural change.)

❏ Audio cassettes:
* The Role and Focus of a Software Engineering Process Group (SEPG)
* Making Change Happen—a 10-Piece Tool Box

Detailed information on our services is available at www.processgroup.com.

All services are tailorable in content and delivery. They are available on-site and
include unlimited telephone/email support.

Contact us at 972-418-9541 or help@processgroup.com to discuss your needs.

The Process Group
Mailing address: The Process Group

P.O. Box 700012
Dallas, TX 75370

Telephone number: 972-418-9541

Fax number: 972-618-6283

E-mail: help@processgroup.com
Web: www.processgroup.com

POST back issues are on line

Editor’s corner
(Continued from page 1)

Please send us your e-mail address to receive future issues.

Software delivery problems?
We have answers now.

Whether you are
building e-commerce
or not, you have
delivery goals to meet.

When an improvement program is in full
swing, it is necessary to monitor
progress. A mini-assessment obtains a
quick snapshot of the improvement pro-
gram. The results show which practices
are being adopted and which are not. A
mini-assessment is not an audit or a full
process assessment, but a friendly check
to determine progress.

Before a mini-assessment is conducted, it
is important to decide what practices will
be checked for adoption. This could
include the activities described by the
organization's development life cycle,
SEI CMM, ISO9001 or Bellcore model.
A list of questions is based on these
criteria.

Mini-assessment process

There are five steps to the mini-assess-
ment process.

1. Meet with the developers and man-
agers to explain what will be checked
and how.

2. Perform the mini-assessment (verbal
interview with questionnaire).

3. Publish the results (organization sum-
mary).

4. Debrief with the participants.

5. Improve the questionnaire (add exam-
ples and remove ambiguity).

• Meet with the developers and man-
agers to explain what will be checked
and how

Start with a one-hour meeting of all the
participants and describe the process.
Involving the developers and managers
throughout the mini-assessment process
will help ensure its effectiveness and cre-
ate buy-in.

• Perform the mini-assessment (ver-
bal interview with questionnaire)

The mini-assessment team interviews
each development team using the defined
questions. A verbal interview is used to
ensure the quality of the responses. For
example, if the project team answered
yes to, "Do you perform configuration
management of all critical work prod-
ucts?," then you can ask clarifying ques-
tions about CM practices.

The interview typically takes one or two
hours, depending on the number of ques-
tions asked.

• Publish the results (organization
summary)

The results of a mini-assessment can be
published graphically using a bar chart
(see Figure 1) to indicate the percent of
"yes" responses. This chart shows the
trend of the group. If the organization is
very large, you may decide to publish the

results for each major division.

The graph indicates that progress was
made between January '99 and May '99.
Ground was lost in September. The cause
of this decline was the attrition of person-
nel.

Keeping the data confidential

We suggest that the assessment team
keep all individual project data in confi-
dence. Each team can obtain data about
its own score for the purpose of its own
improvement. The focus of management
should be on the published, organization-
wide trends.

• Debrief with the participants

The mini-assessment can cause resent-
ment among the interviewees if it is not
managed carefully. The developers may
perceive it to be an audit, regardless of
what happens. To make the process effec-
tive, the mini-assessment team needs to
obtain involvement from the organization
before and after the mini-assessment. A

Checking improvement
By Neil Potter and Mary Sakry

Sample
mini-assessment questions

Does your team:

• Perform inspections or walk-
throughs for critical work products
(e.g. code, design, test cases, and
plans)?

• Perform black-box testing?

• Perform configuration management
(CM) of all critical work products
(from plans to code)?

• Have adequate cross-site develop-
ment version control?

• Have adequate computer network
stability?

• Use a process for estimation?

• Use a process for risk management?

Keep the data confidential

Organization A

Improvement Goal

0%

25%

50%

75%

100%

% Total criteria
adopted by all
projects in
Organization A

Jan '99 May '99 Sept '99 Jan '00 May '00
Time

(Continued on page 4)

Figure 1

debrief with the participants, after the
results have been published, identifies
what aspects of the mini-assessment
process were effective and what aspects
need to be improved. This debrief typi-
cally takes one hour, utilizing the follow-
ing agenda:

1. Brainstorm what the organization
liked about the mini-assessment
process.

2. Brainstorm areas for improvement of
the mini-assessment process.

3. Remove invalid or irrelevant items
from the brainstorm list.

4. Set priorities for areas to improve.

5. Assign responsibilities for actions.

• Improve the questionnaire (add
examples and remove ambiguity)

In addition to a debrief, it is also benefi-
cial to invite between three and ten inter-
viewees to help review the criteria used
in the mini-assessment. This review can

help remove ambiguities in the question-
naire and elicit examples to improve clar-
ity. The questionnaire can be improved
by adding a column to help describe the
use or intent of the practices being advo-
cated. An example is shown in figure 2.

Summary

This mini-assessment process is an effec-
tive way to understand which practices
have been adopted and which have not.
The information is used to understand
current gaps, obtain insight on problems
with deployment, and provide a basis for
replanning the improvement effort.

of paperwork to purchase needed devel-
opment tools? Must data be converted to
a different format? Work waiting to be
done is called WIP or Work In Process.
The more you have, the longer your cycle
time. What causes excess WIP? The three
culprits mentioned in the first paragraph:
variability, complexity, and barriers/bot-
tlenecks.

How do we improve cycle time? By
attacking the three fundamental prob-
lems. Sometimes the proper actions are
“counterintuitive”. For example, the
cycles of learning principle says it’s
faster to do the job three times, in small
increments, than to do it all at once. The
small batch principle says that “economy
of scale” doesn’t always work. Smooth
flow, another cycle time principle, says
the optimal process is one where each

step flows at the same speed, as the cars
on a train, rather than having each step
go as fast as it can, as the cars on a high-
way. What does this mean in practice?
Instead of encouraging everyone to go as
fast as they can, you need to look at the
overall system, find its bottlenecks, and
focus resources and ingenuity to optimize
performance at the bottlenecks. For
example, it may be more sensible to have
a programmer help out in the testing
process than to have him/her write pro-
grams faster. Overly-complex processes
and bottlenecks often result from precau-
tionary measures that protect against
unlikely or inexpensive problems. One
company saved a lot of time and money
by eliminating the requirement for travel
authorizations. The reduction in bureau-
cracy saved millions each year—much

more than the slightly increased cost of
inappropriate travel. After all, how many
employees will risk their jobs just to take
an unjustified trip?

You can shorten schedules permanently
by attacking the root causes of cycle time
problems. And when you deal with caus-
es instead of symptoms, you save money
and improve product quality. This is the
wonderful secret of cycle time reduction
—you win on all counts! The techniques
are not hard—you just have to apply
basic principles in a methodical fashion
and be open to new ways of doing your
work. And if you aren’t sure whether to
try it, remember your competitors --
they’re out there working to be faster
than you.

Meeting tight schedules
(Continued from page 1)

Checking improvements
(Continued from page 3)

Perform inspections or walk-throughs
for critical work products (e.g, code,
design, test cases, and plans)?

Perform black-box testing?

Perform configuration management of
all critical work products (from plans
to code)?

Mini-assessment questions Use or intent of the practices

To find defects systematically. Gilb,
Fagan or Weinberg processes are
acceptable.

The software is tested against the
requirements specification and user
guide.

Version control is conducted for all
critical outputs created when using the
standard development life cycle (e.g.,
requirements, design, code, test cases,
user guide). Teams can use a tool or
manual version numbering.

Figure 2.

The Process Group has collaborated with Dennis J. Frailey on a new program called
Cycle Time Reduction for Small Software Projects. Please call or visit our web site for details.

