THE

& PROCEN

e Rour

HELPING YOU IMPROVE YOUR
SOFTWARE ENGINEERING PROCESS

Vol. 8, No. 1

February 2001

Editor’s corner

Improving software
devel opment
organizations

The Process Group has written a draft
manuscript for a book, describing the crit-
ica steps needed to plan and implement
process improvement within a software
development organization. It is based on
our work with more than 3,000 software
professionals in 100 companies around
the world. We have seen what works and
what does not. We have included stories
and examples from companies using these
ideas for improvement.

The book has been organized into four
chapters based on the Shewhart cycle for
planning and managing improvement
(Plan, Do, Check, Act).

PLAN - In Chapter one, you will
develop an improvement plan based on
the business goals and problems of your
organization. This approach addresses
the frustration that many people experi-
ence when improvement programs do
not relate to the product development
work being done.

DO - Chapter two describes techniques
for deploying new ideas across the organ-
ization. These techniques address frustra-
tions such as resistance, unwieldy solu-
tions and slow deployment.

CHECK - Chapter three describes tech-
niques for checking the progress of your
improvement program. Checking
improvement is an essential activity to
provide the organization with feedback
when pursuing business goals and
solving problems. The resulting data
alowsfor early problem detection, early
correction and visibility to management
on improvement progress.

(Continued on page 2)

Getting product requirements—
sorting the information

by Neil Potter

If you are a software developer or busi-
ness analyst, you probably have had good
and bad experiences of dliciting and
defining product requirements.

When developers and business analysts
elicit product requirements, they often
ask the user to describe the work tasks
he or she currently performs manually.
The user often responds with a mix of
tasks, data definitions, whims from
memories of using other products, frus-
trations he or she has had with previous
vendors and comments on the need for
speed and reliability. This mixed bag of
data is confusing and can lead to the
creation of an unfocused and confusing
product requirements definition. This, in
turn, leads to products with deficiencies
and bugs.

or Scenario

One effective way to start the require-
ments elicitation processis to have a
predefined set of categories for sorting
the data collected during a user interview
session. A category schemeis also a good
reminder of the topics you need to ask
about in order to obtain a comprehensive
set of requirements.

An example category schemeis shownin
figure 1, based on the book “ Software
Requirements,” by Karl Wiegers.
Information collected in an interview
session with a user is tagged with one of
the category names. For example, when
the user mentions that the business-to-
business Internet solution you are
creating needs to replace all company
transactions currently done on paper, put

(Continued on back page)

Constraint

Solution Ideas

Data Definition

Functional
Requirement

Business
Requirement

Figure 1 — Categories for sorting user requirements

Softwar e development problems?
We have answers now.

[0 Understand customer needs. Clarify product requirements early.
In this workshop, IN SEARCH OF EXCELLENT REQUIREMENTS, Software engineers,
managers, requirements analysts and user representatives learn how to gather,
document, analyze and manage customer requirements for software applications.

[0 Decrease product development time-to-market.
In this workshop, ACCELERATING PRODUCT DEVELOPMENT FOR SMALL
SOFTWARE PROJECTS THROUGH CycCLE TIME REDUCTION, project managers and
their teams learn how to accelerate delivery through specialized schedule
optimization techniques.

00 Launch projects effectively. Meet project deadlines and reduce risks.
In this three-day SOFTWARE PROJECT PLANNING AND MANAGEMENT workshop,
project managers and their teams learn how to meet deadlines through better
estimation, reduce surprises using risk management, schedule work for better
optimization, understand and negotiate project trade-offs, and track progress.

[0 Meet project deadlines. Scope and estimate the project work.
This one-day SorTwARE EsTIMATION Workshop (a subset of Software Project
Planning and Management) helps teams develop more accurate estimates.

[0 Avoid schedule delays caused by needless product rework.
Find defects rapidly.
This two-day InsPECTION (PEER REVIEWS) Workshop teaches teams to efficiently
find defects in code and documentation. (Includes moderator skills.)

0 Hands-on SEI CMM/CMMI. Perform a mini-CMM gap-analysis.
The following workshops are available:
[0 SEl LeveL 2 (one day), SEI LEvEL 3 (two days), SEI LEVEL 4 (one day).
0 SEI CMMI—Overview of CMMI-v1.0 (one half-day presentation).

O ldentify critical changesto improve organizational results.
Benchmark against the CM M.
A SOFTWARE PROCESS ASSESSMENT €xamines your organization’s software prac-
tices and generates a focused list of the critical areas for improvement. Our SEI
authorized Lead Assessors conduct customized CMM-based appraisals.

0 Goal/problem-based improvement.
This two-day SOFTWARE ENGINEERING PROCESS IMPROVEMENT Workshop
provides a systematic approach for organizations to improve their development
capability. It includes: getting management support, focusing the organization
on the critical issues, planning the improvement and effecting change.

0 Tailored assistance. Dedicated phone-based assistance.
This service consists of customized education and coaching on your specific
problems (e.g., meeting deadlines, quality and cultural change.)

0 Audio cassttes:
* The Role and Focus of a Software Engineering Process Group (SEPG)
* Making Change Happen—a 10-Piece Tool Box

Detailed information on our servicesis available at www.processgroup.com.

Contact us at 972-418-9541 or hel p@processgroup.com to discuss your needs.

Editor’s corner

Improving softwar e development
organizations
(Continued from page 1)

ACT - Chapter four provides examples of
corrective action to get an improvement
program back on track using the experi-
ence gained so far. It also discusses
changing your process improvement
approach based on lessons learned,
making future executions of the Plan-Do-
Check-Act cycle more effective.

The book is applicable to anyone wanting
to start or refine a process improvement
effort. The improvement model used as
an exampleisthe SEI CMM. If you
would like to read this manuscript and
provide feedback, please visit this web
site: www.processgroup.com/tpgbook.htm

Mary Sakry

[]Successful
people
keep moving.
They make

mistakes,
but they
don't quit.|]

—Conrad Hilton—

X

The Process Group

Mailing address: The Process Group
PO. Box 700012
Dallas, TX 75370

Telephone number: 972-418-9541
Fax number: 972-618-6283

E-mail: help@processgroup.com
Web: www.processgroup.com

POST back issues are on line

Accderating product development through

cycletimer

uction

By Dennis J. Frailey (Senior Fellow, Raytheon; Adjunct Professor, SMU; Process Group associate)

Edited by Mary Sakry

Your software is far from ready, but it's
almost time to ship. You work overtime
to rush through the most important func-
tions — you skimp on testing, gloss over
the quality assurance, and somehow get it
out the door. Then you resign yourself to
customer complaints, frayed nerves and a
never-ending update cycle. Why isthere
never enough time to do it right?
Shortening cycle time would give you a
competitive edge — if you could figure
out how to do it.

Here are some common causes that lead
to lack of time and suggestions on what
to do.

Delays

Seemingly innocuous things can cause
unnecessary delays in software projects.
For example, in one organization that we
studied, the top three causes were;
incompatible tools and data formats, inef-
ficient approval procedures, and failure to
plan effectively. Incompatible data
formats add complexity to the process
because you have to do extrawork to
convert the data and this creates bottle-
necks that consume more time. Approval
procedures are natural bottlenecks and
often introduce variability due to unpre-
dictable waits. On one maintenance
project, for example, the average
customer complaint took three months to
resolve, and actual resolution times

varied from one to six months. About 40— /

percent of the average delay was traced
to an arcane approval procedure. We
fixed the problem by creating a more
efficient electronic approval procedure.
The result was a reduction of more than a
month in average complaint resolution
time with a variance of only about 15
days. The worst case was now two and
one-half months instead of six!

Excessive backlogs or WIP
(Work In Process)

Cycle time problems are often easy to
see. For example, atell-tale symptom isa
backlog of work, such as designs waiting
to be reviewed or code waiting to be

tested. Work In Process (WIP) is a neces-
sary part of any process, but queuing
theory states that the more WIP you have,
the longer your cycle time. A simple
equation that shows the relationship is,
Average Cycle Time = WIP/Throughput.

To shorten cycle time, you must increase
throughput and/or decrease WIP.
However, it's hard to increase throughput
without increasing WIP, so the smart
approach is to reduce the WIP— the
excessive backlogs in your process. For
example, suppose you notice that prod-
ucts are waiting to be tested, but thereis
not enough test capacity. The products
waiting are excessive WIP. The testing
process is a bottleneck. The cause of the
bottleneck might be insufficient test
equipment, insufficient staffing of the test
process, or inadequate maintenance of the
test equipment.

Rework

A more fundamental symptom of cycle
time problems is rework. Doing things
over increases WIP, which adds cost and
introduces delays. Much rework comes
from simple things. rushing the work
(introducing more errors), miscommuni-
cation (resulting in doing the wrong
thing) and inadequate training (resulting
in wasted time making mistakes on the
job). Measuring rework — and taking
action to reduce it — is an important
cycle time improvement technique.

What you can do

Sometimes the actions needed to reduce
cycle time go against intuition. For
example, consider the Cycles of Learning
technique, which saysiit is faster to do a
job in several small increments, rather
than to do it al at once. Intuition might
suggest that it would be faster to do it
only once. But by attacking ajob in small
chunks, you make mistakes and learn
from them on the early cycles, then
perform at top speed in later cycles. Most
of us recognize this astrue for software
development: repeated or incremental
development is often the fastest
approach, provided you learn to do better
each time through.

The Small Batch technique is also coun-
terintuitive. We are accustomed to the
concept of economy of scale, which says
that large batches are more efficient
because they require less overhead. But
economies of scale don’t always work.
Why? Because large-scale economies are
only realized when the requirements do
not change and the process is close to
perfect. Small batches reduce the amount
thrown away or reworked when things
change. If we designed and coded 10
modules, learned about our mistakes, and
corrected them, we would only have to
re-do 10 modules. The subsequent
batches would likely have fewer problems.

The payoff

By attacking the root causes of cycle
time problems, you can improve your
delivery schedules permanently. When
you deal with causes instead of symp-
toms, you save money and improve
product quality as well. The techniques
are not hard. You simply have to apply
basic principles in a methodical fashion
and be open to new ways of doing your
work. The biggest problem is often
selling your “counterintuitive” ideas,
which is where measurement really helps.
If you are not sure whether to try cycle
time improvement, remember that your
competitors are constantly striving to be
faster than you.

(Continued on back page)

Getting product requirements— sorting the information

(Continued from page 1)

that piece of information in the Business
Requirements category. A Business
Requirement is a statement of alarge
business need being supported by the
product you are creating.

When the user talks about detailed tasks he
or she needs to perform with your product,
label that comment as a Use Case or
Scenario. The user might say, “I need to
read data from my website and import it

you to program in,” are ideas that need
further investigation before they become
requirements.

A Quality Attribute describes how well
the product will perform. This could
include items such as robustness or user
friendliness. “ The system needs to run
seven days each week, 24 hours per day,”
and “The product will till function when
reading in foreign data,” are Quality

product, such as user record definitions,
allowed password formats and supported

file types. Each time you hear areference
to a piece of data, label it with Data

Definition, so that data types are defined
in one place.

External Interface Requirements state all

of the interfaces that are needed to allow
the product to work correctly in its target
environment.

directly into my customer database,” or Attributes.
“When the network measurement system is
complete, | need to see an X-graph so that

| can begin my analysis.” The information
collected in this session is the starting

point for defining a complete Use Case.

During the session, listen for Business
Rules. These are characteristics of the
product that state when certain operations
can be performed. Examples include: “The
automatic de-icer can be invoked only

when the plane is on the ground,” “Money -
can be withdrawn from account type YY

Functional Requirements are descriptions
of the product components that will be
built. These descriptions help the devel-
oper build the correct functiondlity into
the product. Examplesinclude, “The log-
in command will verify avalid log-in
ID,” “The log-in function will reject
numeric IDs that are less than four char-
acters,” and “Expired accounts will be

= validated with correct entry of the

= mother’s maiden name.” Functional

— Requirements can sometimes come from

— discussions with the user. Mostly, they are

only with a supervisor’s approval in the ' =

system,” and “The pilot should not be able
to raise the undercarriage when on the
runway.” Overlooking Business Rules can
lead to serious product flaws.

Interwoven in the user’s comments will
be Solution Ideas — things the user has
seen in other systems that he or she
thinks are essential. These ideas might
not make sense in the solution you are
providing and should be labeled as
Solution ldeas until they have been
analyzed further. “Make all menus like
the ones in Mac MSWord2001,” or “I
think Java would be a cool language for

Constraints describe the world the
product developer has to target when
building the product. The Constraint,
“The product must work on an isolated
Windows 2000 machine with a maximum
of 128MB of memory,” would prevent the
developer from assuming that memory
can be added anytime, and that a network
is available for data backup tasks.

The Data Definition category is a place
to store descriptions of data used by the

written by developers to describe what the
product will do, in response to the needs
collected in the interview session.

If you are a business analyst or devel oper
involved in understanding product
requirements, use this category scheme to
organize the information you collect. The
scheme can help you sort the needs of the
user and allow you to create a more clear
requirements definition.

The Process Group is licensed to teach
In Search of Excellent Requirements,
atwo-day workshop based on the book
Software Requirements, by Karl Wiegers,
Microsoft Press, 1999.

Accelerating product
development through cycle

time reduction
(Continued from page 2)

The Process Group has collaborated with
Dennis J. Frailey on a program called
Accelerating Product Development for
Small Software Projects Through Cycle
Time Reduction. A more detailed version
of thisarticle is available on our web site.

For that article, or for more information
about this workshop, please call or visit
WWW.processgroup.com/cycletime-info.htm

THINK IT OVER

Theworld isfull of willing people.
Some willing to work, the rest willing to let them.
—Robert Frost—

Do not tell me how hard you work.
Tell me how much you get done.
—James J. Ling—

In order to succeed, you must know what you are doing,
like what you are doing, and believe in what you are doing.
—Will Rogers—

